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The aim of this paper is a critical analysis of the methodology of Imre Lakatos. We will try to show that the full potential of Lakatos’ methodological ideas could not manifest itself, because of their confusion with dialectic. So by separating the hard core of Lakatosian methodology from the dialectical heritage of his marxist past, we believe to create a better working and more effective methodology of the same spirit. Thus even if we start with criticism of Lakatos’ ideas, we will not stop there, but we will try to turn our criticism into some positive emendations.

It is generally accepted that Lakatos’ method of rational reconstruction of the history of mathematics has beside its many merits also some weaknesses. We would like to show that these weaknesses are caused by his mixing up dialectic with logic. In this way Lakatos developed an appealing and interesting theory, which at least at the first glance has both advantages - the liveliness of dialectic and the soundness of logic. Unfortunately this attempt to combine dialectic with logic has also one disadvantage. The focus on logic restricts severely the scope of changes, to which this method can be applied. That is why Lakatos is forced to neglect in his rational reconstruction many episodes in the history of mathematics, which just do not fit into his scheme. But on the other side dialectic gives his theory the illusion of universality and so he seems to be unaware of his omissions. Thus we see dialectic to be the basic brake to the development of Lakatos’ methodology.

We interpret dialectic very broadly as a current of philosophical thought which tries to interpret the growth of knowledge using a prescribed pattern of stages, methods, or laws of development of knowledge. Most often there are three such stages (Hegel’s thesis, antithesis, and synthesis; Kuhn’s normal science, crisis, and revolution; or Lakatos’ stages of naive trial and error, proof-procedures, and research programme - see Lakatos 1978, pp. 93-103). Usually the dialecticians believe, that the pattern of development of knowledge is of logical nature (Hegel’s idea of dialectical logic, Popper’s logic of scientific discovery or Lakatos’ logic of mathematical discovery), what creates a tension between development of knowledge and formal logic. Finally dialecticians believe that the pattern of development of knowledge is universal and thus it can be applied to nearly every field of human knowledge. We believe that in Lakatos’ methodology we can find all these characteristic features of dialectic and so Lakatos is, at least in our broad sense of the word, a dialectician. Nevertheless it seems that it was precisely this dialectical heritage, which braked him in developing his theory and prevented him from using all its potential. 

The aim of our paper is to separate the creative core of Lakatos’ ideas from their dialectical cover and in this way to make a positive problemshift in Lakatosian methodology. Our strategy is to offer in each of the three above mentioned „dialectical faults“ (i.e. existence of prescribed patterns, their logical nature and universal character) an alternative reconstruction. So in each case we present the classical Lakatosian reconstruction of the development of some theory, and confront it with a different reconstruction of the same material. This approach is usually applied in order to asses Lakatosian reconstruction of history. We will not proceed this way. Our aim is not to asses Lakatos. We rather use the confrontation with alternative ways of reconstruction to separate Lakatos’ methodology from its dialectical features in order to find some positive possibilities for its further development. 

Our paper has three parts which correspond to the three featured of dialectic described above. In the first part of the paper we will try to show, that the basic patterns of the methodology of proofs and refutations (monster-barring, exception-barring, and lemma-incorporation) can be supplemented by further ones. Thus we can rise the question of describing and classifying all such patterns, instead of presenting only some of them, as Lakatos did. 

In the second part of the paper we will analyse the development of mathematics from geometry to topology, the reconstruction of which, we believe, is a central weakness of Lakatos’ Proofs and Refutations. We will present an alternative reconstruction of the development of this field. Our reconstruction is based on Wittgenstein’s concept of the form of language from the Tractatus and thus it is neither dialectical nor logical. It is based on the picture theory of meaning, and so is semantic in nature. From this comparison it will be obvious, that Lakatos’ method of proofs and refutations fits only to a very restricted variety of changes in the development of mathematics. Perhaps that is the reason, why even if Lakatos proclaimed it to be a universal approach to understand changes in mathematics, it did not find many followers and slowly it petered out.
In the third part of the paper we turn to Lakatos’ methodology of scientific research programmes (MSRP). We will point to an omission, which is in many respects similar to the omission of the  reconstruction of the transition from geometry to topology in Proofs and Refutations. We will again confront Lakatosian MSRP with another way of reconstruction, based on a classification of epistemic ruptures of the scientific language. We suggest that there are four different kinds of changes in science. Lakatos deals in his methodology only with one of them, but presents his results as universally valid. We believe, that if we supplement Lakatos’ theory with the three other kinds of change, the fundamental problems with the identification of research programmes in mathematics can be solved.

1. Lakatos’ methodology of proofs and refutations

Lakatos’ Proofs and Refutations (Lakatos 1976) are written in the form of a dialogue taking place in a classroom. But it is not an ordinary classroom. Lakatos has brought together the greatest mathematicians of the past, who contributed to the theory of polyhedra - from Cauchy, Lhuilier and Hessel to Abel and Poincaré. It is an exciting idea to imagine, what would happen, if all the participants of a scientific debate, lasting over two centuries, could meet and discuss the problems together. How would Cauchy react to the counterexamples to his theorem? Would he accept Poincaré’s topological proof? So the very idea of such an imaginary dialogue is interesting. But Lakatos achieved even more. He succeeded to distil from the history some basic patterns of thought, which can be found in many other areas of mathematics. These are his famous monster barring, exception barring, and lemma incorporation. We will present them shortly.

1.1 The monster barring, exception barring, and lemma incorporation

The discussion in the classroom is about Euler’s theorem saying, that for all polyhedra the number of vertices V, number of edges E, and number of faces F fulfil a simple relation: V - E + F = 2. After the teacher presented a proof - actually the classical proof stemming from Cauchy, some counterexamples appear. We will not present all the counterexamples discussed in the book, we just select a few of them, and show the basic ideas.


Example 1: A cube, which has inside of it an empty hole in the form of a small cube. It easy to see, that in this case V - E + F =  4, and not 2, as it should, according to the theorem.


Example 2: Two tetrahedra which have an edge in common. Here we have V - E + F = 3

Surely, these examples are so to say principles how we can construct some strange objects. Thus it is not difficult to imagine an object having many holes or to build a whole chain of different polyhedra in which any two neighbours have a common edge. Now the question is how to deal with these objects which contradict Euler’s theorem.

The first strategy described by Lakatos is the monster-barring. These strange object are surely not what we have in mind, when we are speaking about polyhedra. They are some monsters and we should not allow them to enter into our considerations. They are of no theoretical interest and no normal mathematician would ever think of them as polyhedra.

The second strategy Lakatos calls exception-barring. According to it we admit, that these objects are genuine polyhedra and so they are real counterexamples for the theorem. The theorem as it was stated originally does not hold. It is not so general as we have formerly thought. We have to restrict our theorem so, that all these exceptions would fall outside its domain. It is obvious, that all the examples mentioned above are not convex. Thus if we restrict ourselves to convex polyhedra, the theorem is saved.

The third strategy described by Lakatos is the lemma incorporation. In both previously described cases we have not learned from our four objects much new. In the monster-barring we just ignore them, thus we state the theorem more generally as it really was. On the other side, in the exception-barring, we restricted the theorem too much. We should not restrict ourselves to the original theorem, we should rather try to find a more general one, which would include also the strange objects. Only in this way can we learn something really new. Thus we should try to understand, in which way a common edge or a hole changes the resulting statement of the theorem, and we should find a way how to incorporate them into the theorem. Our task is not to find a safe ground on which the theorem holds (as in the exception-barring). We have first to understand what new we can learn from these objects. 

1.2 Lemma exclusion as a further candidate

Teun Koetsier in his book Lakatos’ Philosophy of Mathematics (Koetsier 1991) compared Lakatos’ reconstruction of the development of the theory of polyhedra from Proofs and Refutations with the actual history. He gives the following account: „ There is some resemblance between Lakatos’s reconstruction concerning the formula of Euler for polyhedra and the real history. ... Yet the rational construction deviates considerably from the chronological order in which things actually happened. ... As far as chronology is concerned, there is not much in common between dialogue and real history. There is no doubt that „Proofs and Refutations“ contains a highly counterfactual rational reconstruction.“ (Koetsier 1991, p. 42). We agree with this assessment as well as with Koetsier’s statement that „Proofs and Refutations is mainly convincing because it shows recognisable mathematical behaviour“ (p. 44).

Nevertheless there is also another question. Even if we admit that Lakatos’s rational reconstruction deviates from actual history, but does it offer a true picture of the mathematical behaviour itself? Doubts in this respect were expressed recently by David Corfield (Corfield 1997), who argued that the counterexamples do not play such an important role in mathematics as Lakatos gives them in his rational reconstruction. He gives the example of Poincaré’s Analysis situs, the proofs of which were changed to a large extent, nevertheless there was only one counterexample to a single lemma in the whole 300 pages of the text (Corfield 1997, p. 108). Thus the reformulations of Poincaré’s proofs and theorems were not the result of the discovery of counterexamples. That means, that there are other patterns of mathematical behaviour, which were omitted in Lakatos’s reconstruction. 

One such clearly recognisable pattern can be found in Koetsier’s book. We have in mind the proof of the interchangeability theorem for partial differentiation by H. A. Schwarz. Schwarz first stated the theorem of interchangeability with six conditions, proved it, and then attempted to drop as many of the conditions as possible. He succeeded to drop three of the six conditions, and thus ended with a much stronger theorem than the one which he proved at the beginning (Koetsier 1991, p. 268-271). We suggest calling this method lemma-exclusion and to consider it as a counterpart to Lakatos’s lemma incorporation. If we incorporate this fourth method into Lakatos’s theory, we get the following schema:
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According to this schema we have two possible reactions on the appearance of a counterexample. The one is to ignore the counterexamples as monsters, the other is to consider them as exceptions and restrict the theorem to the safe ground. Nevertheless the monster-barrer states the theorem more generally than it really holds. On the other side the exception-barrer restricts the theorem often too strongly (for instance BETA in Proofs and Refutations p. 28 restricted Euler’s theorem to convex polyhedra, or H. A. Schwarz in his first theorem restricted the interchangeability theorem only to functions fulfilling all the six conditions). After some time these first reactions are overcame. The monster-barring method is followed by lemma-incorporation, where the aim of having the theorem as general as possible is still preserved, but the counterexamples are no more ignored. On the other hand the exception-barring is followed by lemma-exclusion (as the case of H. A. Schwarz suggests), where the aim of being all the time on safe ground is preserved, but the too strong restrictions of the domain of the theorem are weakened step by step. In the ideal case the lemma-incorporation and the lemma-exclusion meet each other when the necessary and sufficient conditions of the theorem are found.

1.3 Dialectic versus history in the methodology of proofs and refutations

One possible objection against including the method of lemma-exclusion into the methodology of proofs and refutations is that in this method the counterexamples have not such an important role as they have in the other three methods. Nevertheless, it is important to realise that the stress laid on counterexamples stems rather from the dialectical background of Lakatos’ thought than from the analysis of the development of mathematics itself. Even if we do not deny the heuristic value of dialectic for Lakatos’ methodology, we are not compelled to accept also its limiting consequences.

We believe that in order to answer the questions about Lakatos’ methodology some further case studies are needed. Some research has been already done (see Koetsier 1991), but it was mainly in the framework of the methodology of scientific research programmes. An interesting topic for further development of the methodology of proofs and refutations would be a thorough study of the different proofs of the fifth Euclid’s postulate from Proclus till Saccheri. There the situation is analogous to the Euler’s theorem analysed by Lakatos - a long series of proofs and disproves of a rather simple statement. Nevertheless, as the fifth postulate is not provable, the role of counterexamples might be quite different than it was in the proofs of Euler’s theorem. The mistakes of the proofs of the fifth postulate ware most often found by a discovery of a circularity in the proof rather than by a counterexample.

Thus how far does the method of lemma-exclusion fit into the Lakatosian methodology of proofs and refutations is an opened question. We presented it only in order to show that the possibilities of this methodology are far from being exhausted. It is natural to ask, which other methods of the methodology of proofs and refutations do exist? Is our reconstruction of the mathematical practice complete, or we are still occupied only with a fragment of it? What are the relations between the various methods?

2. The conflict of dialectic and logic in Proofs and Refutations

The methods described in the previous section are by no means bound to the theory of polyhedra. They rather describe universal strategies, which mathematicians used in many areas. The term monster was used to describe the new functions of real variable, discovered in the nineteenth century, which have many strange properties, and which are now called as fractals. The first reaction of many leading mathematicians was just to ignore them like monsters. The first reaction to complex numbers or to the discovery of incommensurability in ancient Greece was very much the same. That is why any mathematician feels a real enjoyment, when reading the first part of the Proofs and Refutations. Nevertheless, coming to the second part (p. 106), some problems appear.

2.1 Lakatos’s Proofs and Refutations ( some problems

The first problem is rather a technical one. On page 113 Lakatos claims, that the heptahedron (i.e. the projective plane) bounds. („The next term to be elucidated is bound. I shall say that  a k-circuit bounds, if it is the boundary of a (k+1)-chain. ... Now it is absolutely clear that for instance the heptahedron bounds.“) Here Lakatos contradicts his own statement from page 110, where he (correctly) asserted, that the heptahedron is a one-sided surface and thus there is no geometrical body, which the heptahedron could bound. It is surprising that the editors John Worral and Elie Zahar, who completed the book with detailed commentary, left this problem without any notice. Also Mark Steiner who in his paper „The philosophy of mathematics of Imre Lakatos“ (Steiner 1983) presented a nice exposition of Poincaré’s proof, and filled the gaps of Lakatos’ original presentation, did not mention this inconsistency of Lakatos. This inconsistency in the second part of the Proofs and Refutations is probably a result of the fact, that Lakatos did not want to complicate his text by details about the orientation of surfaces. But if we define the concept of boundary without orientation, the whole theory becomes obscure and it is easy to make mistakes. Steiner introduced the concept of orientation, at least implicitly, when speaking of the „sum“ and „difference“ of schemes (Steiner 1983, p. 515).
The second problem is a deeper one. Besides the appendixes the book consists of two major parts. In the first, geometrical, part Lakatos presents a detailed analysis of monster-barring, exception-barring, or lemma-incorporation. The second major part of the book, containing Poincaré’s proof of Euler’s theorem, is not so thoroughly worked out. Nevertheless we can assume, that if Lakatos had lived longer, he would have displayed his gamut of heuristic strategies also on this material. What is striking is the lack of any attempt to connect the two parts of the book. Lakatos, who always stressed the necessity to reconstruct the circumstances in which the new concepts emerged and harshly criticises the mathematicians like Hilbert or Rudin, who presented the formal definitions without any historical background (see Lakatos 1976, pp. 15 and 145), suddenly pulls out of the top-hat the basic concepts of algebraic topology without the slightest comment, and pretends that everything is all right.

2.2 An alternative reconstruction of the development of geometry

The aim of this paragraph is to introduce Wittgenstein’s concept of the form of a language into geometry and to show how it can be used to achieve a better understanding of the historical development of geometry. The basic idea is to use the Picture Theory of Meaning to understand the pictures of geometry. According to Wittgenstein’s Tractatus the form of a language consists of those signs and expressions which have no real denotation. They do not denotate things, but their function is to make denotation possible. I would like to examine the language of the pictures of geometry and try to find the development of its form. A more complete exposition of this method of reconstruction can be found in „History of geometry and the development of the form of its language“ (Kvasz 1998b). Here we restrict ourselves only to the analysis of the Renaissance paintings and projective geometry, which are closely related to Wittgenstein’s Tractatus. Then we turn to the works of Riemann and Poincaré, which are relevant for our discussion of Lakatos. Perhaps the jump from Desargues to Riemann is a big one, nevertheless we hope that the basic idea will be clear enough. This idea is, that the development of geometry consisted in the incorporation of the form of its language into the language itself. 

2.2.1 The language of the perspectivist paintings

The painters of the Renaissance came with a new aim of painting. They started to paint the world as they saw it, to paint it from a particular point of view, to paint it in perspective. They wanted to paint the objects in such a way that the picture would evoke in the spectator the same impression as if he was looking at the real object. Thus, it had to evoke the illusion of depth. To reach this goal the painter had to follow three principles of perspective:

Perspective of size - the remote objects are to be painted smaller

Perspective of colours - the remote objects are to be painted with dimmer colours

Perspective of outlines - the remote objects are to be painted with softer outlines

By following these principles a special line appears on the painting - the horizon. In fact the painter is not allowed to create it by a stroke of his brush. He is not permitted to paint the horizon, which shows itself only when the picture is completed. According to proposition 2.172 of the Tractatus („A picture cannot, however, depict its pictorial form: it displays it.“), the horizon belongs to the form of the language. It corresponds to the boundary of the world pictured by the painting, and therefore, according to proposition 5.632 („The subject does not belong to the world: rather, it is a limit of the world“), the horizon belongs to the subject. So besides the signs of the iconic language which express definite objects, there are expressions on the painting connected not with the objects, but with the subject, which is the bearer of the language. 

Albrecht Dürer (1471 - 1528) showed us in one of his drawings a method by which it is possible to create a perspectivist painting. By a similar procedure the Renaissance painters discovered the principles of perspective. Among other things, they discovered that in order to evoke the illusion of two parallel lines, for instance two opposite sides of a ceiling, they had to draw two convergent lines. They discovered this but did not know why it was so. The answer to this question was given by projective geometry.
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2.2.2 The language of projective geometry

Gérard Desargues (1593 - 1662), the founder of projective geometry came up with an excellent idea. He replaced the object with its picture. So while the painters formulated the problem of perspective as a relation between the picture and reality, Desargues formulated it as a problem of the relation between two pictures.
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The advantage brought by Desargues’ idea is that, instead of the relation between a three-dimensional object and its two-dimensional picture we have to deal with a relation between two two-dimensional pictures. After this replacement of the object by its picture, it is easy to see that Dürer’s dotting procedure becomes a central projection of one picture onto the other with its centre in our eye. We have mentioned all this only to make clear that the centre of projection represents the point of view from which the two pictures make the same impression.




Before we start to consider the central projection of some geometrical objects, we have to clarify what happens with the whole plane on which these objects are drawn. It is not difficult to see that, with the exception of two parallel planes, the projection of a plane is not the whole plane. On the first plane (plane (  the plane from which we project) there is a line a of points for which there are no images. On the other hand, on the other plane (plane ( - the plane onto which we project), there is a line b onto which nothing is projected. To make the central projection a mapping, Desargues had first of all to supplement both planes with infinitely remote points. After this the line a consists of those points of the plane ( which are mapped onto the infinitely remote points of the second plane (. On the other hand, the line b consists of the images of the infinitely remote points of the plane (. So by supplementing each plane with the infinitely remote points, the central projection becomes a one-to-one mapping.

In the pictures of projective geometry there is a remarkable point - different from all other points - the centre of projection. As shown above, the centre of projection represents in an abstract form the eye of the painter from Dürer’s drawing. Nevertheless for Desargues the point of view is explicitly incorporated into language. Besides this point the pictures of projective geometry contain also a remarkable straight line. It is the line a, which is responsible for many of the singularities occurring by projections. The position of the line a on the plane ( is determined by the centre of projection, which represents the eye of the spectator. So it is not difficult to see that the line a represents the horizon. But it is important to realise one basic difference between the horizon in a perspectivist painting and in a picture of projective geometry. In projective geometry the horizon is a straight line, which means it belongs to the language. It is not something that shows itself only when the picture is completed, as in the case of the paintings. Desargues drew the horizon, made from it an ordinary line, a sign of the iconic language. Thus we can say that he incorporated the form of the pictorial language of the Renaissance paintings into the language itself.

2.2.3 The Riemannian analysis situs

For reasons of briefness we have omitted four stages of development of the form of language of geometry, which are connected with the development of non-Euclidean geometry (Lobachevski, Beltrami, Cayley, Klein) and turn now directly to Riemann. The omission of these four stages makes it perhaps a bit difficult to recognise in Riemann all the six aspects of the form of language which we described in the case of projective geometry. The problem is, that these aspects became more and more abstract, and the only way how to identify them in the case of topology is to trace them back through the intermediate stages to the projective geometry. This will now be not possible because of our omission, but anybody interested can turn to the paper (Kvasz 1998d). Our central concern here is just to show, that Poincaré did with the form of language of Riemann’s theory of functions exactly the same thing as Desargues did with the form of language of the Renaissance paintings ( namely he incorporated the form of language into the language itself. In this way it will be clear that our method of reconstruction can fill in the gap between the geometrical and the topological part of Lakatos’s book.

Riemann developed the basic techniques of Analysis situs in the course of his work in the theory of complex functions. We will show the basic steps of Riemann’s construction on the so called Klein’s bottle. Let us take a square and we are going to do what Riemann did with the complex planes, namely to paste together its edges. By every such pasting we have to determine, which two edges are we going to paste together and in which orientation. We will indicate with letters the corresponding edges and with arrows the orientation. If we paste two opposite sides, which are agreeingly oriented,  we get the surface of a cylinder. If we paste two opposite sides of the square but one of them we twist 180 degrees, we get the well known Möbius strip.

           A1

          A1



     A1


       A1

     Cylindrical surface




  
   Möbius strip

Both these pastings are easy to perform in our three dimensional space. The next object, which it is easy to construct is the torus.
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Let us now imagine a square, which differs from that defining the torus only that we have changed the orientation of one of the edges A2 to the opposite.
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We see, that in this case it is impossible to paste the corresponding circles together, because their orientation does not fit. We would need to twist one of them, as we did it with one edge of the square in the construction of the Möbius strip. In the case of the Möbius strip we were lucky. The object before the last (and in fact the only) pasting was planar and thus we had the third dimension of the space on our disposal, which we used for the twisting of one edge of the cut. In this way we obtained the correct orientation of the edges and so could paste them together. In the case of the Klein’s bottle we are in a worse position. The cylindrical surface, the one edge of which we have to twist, is a three-dimensional object, so we have no further free dimension on our disposal, into which we could ‘lean out’ and make the necessary twist. But it is also clear that this is our problem, a problem of our three dimensional space in which we want to do our construction. The Klein’s bottle itself has nothing to do with this. Whether we can or cannot construct it in our three dimensional space is not a property of the object but of our space. Therefore the diagram consisting of a square (or more generally of a polygon with even number of edges), on which it is indicated, which edges and in what orientation should be pasted together, we can consider as a new geometrical language, which makes it possible to represent the particular objects independently of the space. „We should think of space more intrinsically and not as being imbedded in some special way in a particular Euclidean space.“ (Agoston 1976, p 60). 

But who can do this? We think that we have here to do again with an implicit appeal, which is similar to the appeal of the Renaissance painters. The only difference is, that this time we are not required to see two parallel sides of a ceiling beyond two convergent lines of the painting. Now we have to get rid of the space. From our previous experience with such appeals  we know, that we have to do with a new form of language, based on a new kind of epistemic subject. Riemann’s language describes the constitutive acts with the help of which we can create the surfaces. Therefore the epistemic subject, which forms the basis of Riemann’s language is the external constitutive subject. It is external because Riemann is not able to tell us, what exactly we have to do in order to get rid of the three-dimensional space and to see Klein’s bottle. And it is constitutive because it takes over the role, which geometry until Riemann had assigned to space. Riemann has found how we can, in a technical way, grasp this constitutive function. Something, which was given, which represented the a-priori characteristics of the space, is replaced by an a-posteriori structure. 

2.2.4 Poincaré’s combinatorial topology

The basic problem of Riemann’s language was the implicit nature of its form. On the one side it relies on geometrical intuition (for instance we have to see, that by pasting together the sides A1 and A2 we really get a torus), but on the other side it requires us to abandon a considerable part of this intuition (namely its dependence on three-dimensional space). The way out from this dilemma, was found by Henri Poincaré. It is the well known combinatorial topology, which brought an incorporation of the external constitutive subject in an explicit way into the language.
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Let us take for instance the projective plane which can be obtained in Riemann’s framework by pasting a circle to a Möbius strip along its side. Poincaré’s idea was to avoid any pasting (which we are unable to fulfil), and any requirement of forgetting about  space (which we are unable to do). Instead of the appeal to any pasting we just take a picture of Riemann’s language and divide it into triangles. It may seem that we were too generous in this triangulation and have chosen too many triangles. But the aim is to make sure, that no two segments, which correspond to different edges, have the same labels. The internal hexagon (v4 v5 v6 v7 v8 v9 ) represents a circle, while the external belt represents a Möbius strip, and thus the whole object is a projective plane. 

Now we define a k-dimensional simplicial complex (see Agoston 1976, p.32):

Definition 1: Let k(0. A k-dimensional simplex is the convex hull ( of k+1 linearly independent points v0, v1, ..., vk ( Rn. We write ( = v0 v1...vk. The points vi are called the vertices of (.
Definition 2: Let ( = v0 v1...vk be a k-dimensional simplex and let {w0, w1, ..., wl } be a nonempty subset of {v0, v1, ..., vk}, where wi ( wj if i ( j. Then ( = w0w1...wl is called an l-dimensional face of ( and we write ( ( (.
Definition 3: A simplicial complex K, is a finite collection of simplices in some Rn satisfying:

1. If ( ( K, then all faces of ( belong to K

2. If (,( ( K, then either ( (( = (  or ( (( is a common face of ( and (.
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The point v0 is a 0-dimensional simplex, the segment v0v1 is a 1-dimensional simplex and the triangle v0v1v2 is a 2-dimensional simplex. Thus the simplexes are the most simple objects of the particular dimension. The simplexes v0 and v1 are 0-dimensional faces and the v0v1 is a 1-dimensional face of the simplex v0v1. The simplex v0v1 has no other faces. The simplex v0v1v2 has three 0-dimensional, three 1-dimensional and one 2-dimensional face. 

For instance the sphere (i.e. the surface of a ball), which from the topological point of view is an object equivalent to the surface of the tetrahedron, we can represent as the following simplicial complex:






      v3






         v2




      v0






     v1





   sphere

KS = {v0v1v2, v0v1v3, v0v2v3, v1v2v3, v0v1, v0v2, v0v3, v1v2, v1v3, v2v3, v0, v1, v2, v3} 

Similarly for the projective plane we get the following complex

KP = {v1v6v3, v2v3v6, v2v6v5, v1v2v5, v1v5v4, v7v0v6, v1v9v3, v3v9v8, v2v3v8, v1v2v8, v1v8v7, v1v7v6, v1v4v3, v6v0v5, v5v0v4, v0v9v4, v8v9v0, v7v8v0, v1v2, v1v3, v1v4, v1v5, v1v6, v1v7, v1v8, v1v9, v2v3, v2v5, v2v6, v2v8, v3v6, v3v8, v3v9, v4v5, v4v9, v4v0, v5v6, v5v0, v6v7, v6v0, v7v8, v7v0, v8v9, v8v0, v9v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v0}

Now we can forget about Riemann’s picture of the projective plane. The simplicial complex KP represents the projective plane without any reference to pasting. The edge v1v2 in the triangles v1v2v5 and v1v2v8 is simply the same edge. In the picture it is present twice, once at the right lower corner and the second time at the left upper corner. But this is the problem of the picture. It is impossible to draw the projective plane without cutting it and thus the edges which form the cut, will be in the picture two times. On the other hand the simplicial complex represents the particular surface without any reference to some cutting or pasting. Thus in the complex every vertex, edge and face of the projective plane is present only once (as it is listed only once in the definition of KP).

The basic achievement of Poincaré was the development of formal techniques and calculation procedures, which only on the basis of the simplicial complexes make it possible to determine the basic topological invariants of a surface. Without any reference to a picture or space, using only symbols he managed to compute the Betti numbers (which determine connectedness, dimension, Euler characteristic and many other topological invariants). Every surface is constituted by the way in which the triangles of its triangulation are connected. We need no other information in order to determine the topological invariants, and exactly this information is expressed in the abstract simplicial complex. Thus we can say, that Poincaré succeeded in incorporating Riemann’s constitutive acts into the language. Instead of pasting the edges of a square in our imagination (as the real pasting it is usually impossible to fulfil, it remains our task to pretend that we know what would come out  in such pasting) we make the particular triangulation, in which the pasting is already fulfilled (or, more precisely, there is nothing to paste, because nothing was cut). The language of combinatorial topology, and the topology in general, is thus based on the internal constitutive subject. It is the language, by which mathematics liberated itself from dependence on space. It makes it possible to speak about objects independently of whether it is or it is not possible to represent them in our three-dimensional space. The simplicial complex of the projective plane does not differ in any fundamental way from the complex, which corresponds to the sphere. The fact, that it is not possible to realise it in our space is, from the topological point of view, only of secondary importance.

2.3 Coming back to Lakatos’ Proofs and Refutations

Our reconstruction of the development of geometry enables us to explain the strange omission in Lakatos’ book. The transition from geometry to algebraic topology is a change of the form of language, consisting in the introduction of the constitutive subject. This transition, nevertheless, did not happen primarily in the theory of polyhedra (i.e. in the theory the development of which is Lakatos reconstructing), but in theory of functions of complex variables. Riemann as well as Poincaré were led to their fundamental changes of the form of language by problems of complex analysis. Poincaré only afterwards utilises the conceptual progress, achieved in this area, also in geometry and demonstrates the power of the new language in the theory of polyhedra.

Change of the form of language, and even one which had its origin outside the theory which Lakatos was studying, was a rupture with which his way of analysing change did not enable him to deal. His interpretative tools such as monster-barring or lemma-incorporation have failed, because here we are dealing with a change of the whole conceptual basis of geometry and not just with the assumptions of some theorem. Thus what appeared only as a mere omission sheds light onto the boundaries of applicability of Lakatos’ method of Proofs and Refutations. Lakatos’ method of reconstruction can be adopted only in cases when the form of language is not changing. So even if in the last chapters of his book Lakatos is writing about concept formation, the fact, that he did not even recognise one of the most fundamental conceptual changes in the history of mathematics casts doubts concerning the reliability of this part of his analysis.

After what we have said it is not surprising, that Lakatos is misinterpreting the epistemological nature of Poincaré’s proof. He presents it as a ‘translation of the conjecture into the terms of vector-algebra’ (p. 106). But the fundamental epistemological questions, why into the terms of vector-algebra (where is it coming from?) and why into the vector-algebra modulo 2 (why not modulo 3 or 7?) he leaves unanswered. Poincaré made no translation. He only explicitly formulated the structure of constitutive acts, which form the basis of the concept of space. The fact, that these acts are based on arithmetic modulo 2 only shows, that we have to do with constitutive acts. The arithmetic modulo 2 expresses parity. Parity means, that the chain of acts ‘closes itself’ and so constitutes an object (the opened chain does not constitute anything).

We saw, that the concept of the form of language makes it possible to overcome the barriers, which for Lakatosian methodology remained insuperable. The changes of the form of language he either totally ignores (in Proofs and Refutations), or later in the period of the Methodology of Scientific Research Programmes he is able to describe them only as an ‘emergence’ of a new research programme (Poincaré’s programme in the theory of polyhedra or Lagrange’s programme in mechanics). But the question of a fundamental epistemological significance, namely what is the relation between two programmes which follow one another in the development of a theory, thus for instance what is the relation between Riemann’s and Poincaré’s programme in geometry, or between Lagrange’s and Hamilton’s programme in mechanics, this basic question Lakatos did not even raise. Epistemology based on Wittgenstein’s concept of the form of language makes it possible to formulate this question (as a question about the relation between two forms of language) and give a clear answer to it (this relation consists in the explicit incorporation of a previously implicit form of language into the language itself, or in the emergence of a new implicit form following the explicit incorporation of the previous form). 

2.4 Dialectic versus logic in Lakatos’s methodology

The above exposition illustrates the usefulness of the concept of the form of language for epistemology. This usefulness is based on two circumstances. Firstly the concept of the form of language is closely related to the notion of subject and therefore it makes it possible to reconstruct cognitive processes such as heuristics, discovery, interpretation, translation and understanding without a necessity to introduce a subject in the form of an idealised scientist or scientific community. We need not to introduce a subject from outside because the subject is already present in our framework as a constituent of the form of language (c.f. chapter 2.2.3). That means that we are not forced to mix our epistemological considerations with sociological, psychological or historical elements. And secondly the form of language (the nature of the horizon, background, subject, etc.) is clearly separated from logic (the principle of twovalueness, etc.). This liberates our approach from dialectics.

Dialectics (in its explicit form, as we encounter it in Hegel or Marxism, as well as in its implicit form, as it is present in the work of Lakatos or Popper) has a tendency to interpret the evolution of concepts, or knowledge in general, as a process which is logical in nature. It is not by chance that Hegel called dialectics as a science of logic and it is not by chance that Popper speaks about the logic of scientific discovery. According to dialecticians the knowledge is logical in nature. A necessary consequence of this is, that evolution of knowledge comes into conflict with logic.

Both solutions of the dialectician’s conflict between logic and evolution of knowledge are unsatisfactory. Philosophers who are following Hegel in the attempt to replace classical logic by some new dialectical one were unable to offer anything comparable to the successive formal logic, and thus their research programme degenerated. On the other side dialecticians like Popper or Lakatos, who were not prepared to sacrifice logic, and thought that logical consistency is crucial to rational discourse, were forced to give up evolution. The fact, that Lakatos was unable to reconstruct any deeper conceptual change in history of mathematics or physics is not accidental. As a dialectician, he conceives evolution to be in conflict with logic, but as Poppers disciple he is not prepared to give up logic. Thus he omits some of the most interesting moments in the history of mathematics. If he had tried to reconstruct them, he would have been forced to violate logic. Therefore he reconstructs only those changes, in which relatively small conceptual changes occur.

Nevertheless, if we interpret the evolution of concepts as development of the form of language, then the whole logic remains untouched in the course of the evolution. What is evolving, is not logic, not even the separate concepts, but rather the whole conceptual framework, in which they are incorporated. Thus it is possible to describe the evolution of concepts without any logical inconsistency. What is changing in the course of development is the structure of the epistemic subject of language, the horizon, background. Logic remains the same. Epistemology based on the concept of the form of language represents thus a passable way between two extremes. The one extreme is dialectical logic (of Hegel and Marxism), which for the sake of evolution sacrifices logic. The other extreme is logical dialectic (of Popper or Lakatos), which for the sake of logic sacrifices evolution. If we consider evolution as development of the form of language, we can develop epistemology as a exact discipline, free of any dialectical inconsistencies and in spite of this able to grasp the most fundamental conceptual changes in the history of mathematics and science.

3. The question of the universality of the 

Methodology of Scientific Research Programmes

The notion of „research programme“ appears for the first time in Lakatos’s Changes in the Problem of Inductive Logic (Lakatos 1968). Lakatos is using this notion in order to discuss Carnap’s research programme in epistemology. Lakatos wrote: „A successful research programme bustles with activity. There are dozens of puzzles to be solved and technical questions to be answered( even if some of these - inevitably - are the programme’s own creation. But this self-propelling force of the programme may carry away the research workers and cause them to forget about the problem background. They tend not to ask anymore to what degree they have solved the original problem, to what degree they gave up basic positions in order to cope with internal technical difficulties. ... One frequently solves very different problems from those which one has set out to solve.“ Lakatos presented the Methodology of Scientific Research Programmes in his paper Criticism and the Methodology of Scientific Research Programmes (Lakatos 1968). According to Lakatos great scientific achievements are not characterised by an isolated hypothesis (as it was in his Proofs and Refutations, where he presented the development of the theory of polyhedra as centred around Euler’s formula), but rather by a research programme. A research programme manifests itself in the form of a series of successively developed scientific theories, characterised by a certain continuity which connects the members of the series.

3.1 MSRP - some problems

Lakatos is suggesting to view the evolution of science as the development of different research programmes. Nevertheless he wavered according the scale of a research programme. On the one side he writes: “Even science as a whole can be regarded as a huge research programme”, while on the other side we can find the following words: “But what I have primarily in mind is not science as a whole, but rather particular research programmes, such as the one known as ‘Cartesian metaphysics’” (Lakatos 1970, p. 47). It is not clear, whether these two are the only possibilities for a research programme, or whether there are some programmes of an intermediate scale, as for instance quantum physics. Quantum physics taken as a programme is not as large as science as a whole, but on the other side during the development of this programme different metaphysical positions occurred, and so it seems to be a programme of a larger scale than the Cartesian metaphysics, which has the same ontology from the beginning to its end. Lakatos did not make clear, what should be the core, the protective belt, and the positive heuristics of a programme in the case of the large scale programmes, like science as a whole. 

Further, even if Lakatos mentioned the possibility of large scale research programmes, all his examples operate on the smallest possible scale. On page 50 of his ‘Falsification and the Methodology of Scientific Research Programmes’ he gives a detailed description of Newton’s programme: ‘Newton first worked out his programme for a planetary system with a fixed point-like sun and one single point-like planet. It was in this model that he derived his inverse square law for Kepler’s ellipse. But this model was forbidden by Newton’s own third law of dynamics, therefore the model had to be replaced by one in which both sun and planet revolved round their common centre of gravity... Then he worked out the programme for more planets as if there were only heliocentric but no interplanetary forces. Then he worked out the case where the sun and planets were not mass-points but mass-balls... This change involved considerable mathematical difficulties, held up Newton’s work - and delayed the publication of the Principia by more than a decade. Having solved this ‘puzzle’, he started work on spinning balls and their wobbles. Then he admitted interplanetary forces and started work on perturbations...’
In contrast to this detailed description of Newton’s programme Lakatos says nothing about passing from Newtonian mechanics to the Lagrangean and later to Hamiltonian. So even if he mentioned the possibility of programmes on larger scales, he never gave any example of such a programme. This seems very strange, if we have in mind, that Lakatos aimed his theory as an alternative to Kuhn’s theory of scientific revolutions, which operates on the large scale of science as a whole. The fact that Lakatos entered into polemic with Kuhn shows that he understood his theory as universal, but then it is incomprehensible, why did he not analyse some developments on a larger scale. If he would do so, he would probably realise, that his characterisation of the core, belt, and positive heuristics is to narrow.

We believe that this vagueness concerning the scale of the research programme on one side and a very specific characterisation of the programmes core, belt, and heuristics on the other, caused lots of troubles when philosophers tried to use the basic ideas of the MSRP in mathematics. When G. Giorello tried to use the ideas of MSRP to characterise the works of Archimedes (Giorello 1975) and Riemann (Giorello 1981), he faced the problem to find the hard core and protective belt of their programmes. Neither the programme of Archimedes nor that of Riemann have as a hard core some metaphysical theory. Koetsier in his book Lakatos’ Philosophy of Mathematics (Koetsier 1991) discusses the works of Giorello in length and comes to the conclusion that: „Notions like protective belt, positive heuristics, empirical versus theoretical progress all concern natural sciences and they cannot be applied to mathematics without modifications. The attempts by ... Giorello to describe certain mathematical developments in terms of the MSRP clearly show the difficulties involved.“ For this reason Koetsier comes to the conclusion, that it is not possible to use the concepts of MSRP in mathematics and therefore he develops his methodology of research projects and research traditions. 

We disagree in this point with Koetsier’s assessment of Giorello’s papers as well as with his conclusion, that the concepts of MSRP are not applicable in characterising some developments of mathematics. We can take for instance the logicist programme of Gottlob Frege which can be clearly characterised through the metaphysical belief, that there are no mathematical objects as such and that all mathematical truths are logical. (Beside Frege’s logicist programme we could mention also the three other programmes in the foundations of mathematics which competed with it. We have in mind Brouwer’s intuitionist programme, Hilbert’s formalist programme and Cantor’s set theoretical programme.) Another candidate for a research programme in the sense of Lakatos (this time in geometry) could be the Erlangen programme of Felix Klein based on the belief that all geometrical objects can be characterised in terms of invariants of groups of transformations. If one asks what is metaphysical about this belief, we can say that it concerns the very concept of metaphysics saying that to be means to be invariant with respect to some group of transformations. (Beside Klein’s Erlangen programme we could mention also the structuralist programme of Nicolas Bourbaki.) 

Thus the problem is not, that there would be no examples of research programmes in mathematics in the sense of Lakatos. The problem rather is, that there are many other patterns of development. In our opinion the fundamental problem with Lakatos’ MSRP lies in the tension between the very vague characterisation of the scale of a research programme which led Giorello to use this concept rather freely and the very narrow characterisation of the basic concepts as core, belt and heuristics which led Koetsier to his critical assessment of Giorello’s papers. In our view in order to develop Lakatos’ theory in a consistent way, we have two possibilities. The one possibility is to give up Lakatos’ idea that whole of science can be seen as a research programme. In this case we will define a research programme just on a small scale, and so we can preserve Lakatos’ narrow characterisation of the core as metaphysical, and of the belt as consisting of auxiliary hypotheses. The other possibility is to stick to Lakatos’ idea that research programmes operate on different scales and to give up his characterisation of the programme’s core, belt, and heuristics. We think, that the first possibility is less interesting and so our next problem is to characterise the different scales on which programmes operate.

3.2 An alternative strategy of reconstruction - the concept of epistemic ruptures

In our paper On classification of scientific revolutions (Kvasz 1998a) we dealt with the problem to characterise changes in science which occur on different scales and offered a classification of the scales, on which science is changing. The basic idea beyond our classification is the following. It is well known, that when a scientific theory is developed, the new theory has to explain all the relevant facts, which were explained by the old one. This leads to the possibility to embed the old theory into the new one (for instance to embed Newtonian mechanics into the relativistic one). Such embeddings have usually the form of a limit (in the case of the embedding of the Newtonian mechanics into the relativistic one this limit has the form 

). We analysed the development of many different theories and compared the limit, which accompany the embedding of the old theory into the new one. We called these embeddings as epistemic ruptures, and it turned out, that there are at least four different ways, how such embedding can be done. For these reasons we distinguished four kinds of epistemic ruptures.

Examples of epistemic ruptures of the greatest magnitude are the Galilean rupture, during which physics  was turned into an experimental science and the Pythagorean rupture, during which mathematics was turned into a deductive science. This kind of rupture separates Aristotelian physics from Newtonian as well as Egyptian (or Babylonian) from Greek mathematics. We suggest calling this kind of  rupture idealisation. The basic difference between Aristotelian and Newtonian physics lies in the way how they idealise motion. Similarly the basic difference between Egyptian and Greek mathematics could be seen in the way how they idealise shape.

Examples of epistemic ruptures of the next magnitude in mathematics are the Cartesian rupture consisting in birth of analytic geometry, or the Leibnizian rupture consisting in the birth of the differential and integral calculus. These changes are so deep, that it seems, as if in the course of these ruptures quite new universes were created. New  universes of curves or formulas. For instance if we consider  how many kinds of curves were known in mathematics before  the analytic geometry, we will find out that it was only about ten. Descartes and Fermat have discovered a new way of generating curves according to algebraic formulas. In this way infinitely many new kinds of curves appeared, curves unknown to the Greeks. The Greeks could not grasp them, because they  did not have the appropriate analytic language, based on the combination of co-ordinate system, algebraic formulas and  point by point construction. So what was during this rupture qualitatively changed was the scope of objects present in  mathematics. Therefore we would like to call these ruptures re-presentations. They change the ways in which  objects and formulas are present in mathematics, nevertheless the way of idealisation remained unchanged.

Examples of epistemic ruptures of the third magnitude in synthetic geometry are the Desargean rupture - the birth of  projective geometry, the Riemannian rupture - the birth of Analysis situs, or the Poincaréan rupture - the birth of the combinatorial topology, which we have discussed in the second part of this paper. They all operate in the same universe of objects. But what they change radically is the ontological status of these objects. We would like to call these ruptures objectivisations.

The last, fourth kind encompasses epistemic ruptures of the smallest magnitudes. We would like to call this fourth kind of ruptures as re-formulations. As an example of such re-formulation  we can take the Lakatos’ description of the successive re-formulations in the development of Newton’s programme. 

We believe, that our classification of epistemic ruptures can give an alternative approach to the problem of the „fine structure“ of scientific revolutions raised by Giorello for mathematical revolutions: „Revolutions are not instantaneous events but long-term processes... A revolution is not a single break but a complex sequence of breaks.“  (Giorello 1992, p. 165). If we consider the development of quantum mechanics, we can see a basic development which is in accordance with the above described distinctions. Planck introduced in 1900 the hypothesis of quanta as a mere re-formation of the standard description of black body radiation. He did not believe that they really exist and so tried to derive his famous formula without the quantum hypothesis. In 1905 Einstein gave the quantum hypothesis a deeper interpretation in his theory of fotoefect, where he considered quanta as really existing objects. We could say, that Einstein made objectivisation of the quanta. Thus quanta started being considered as real objects, besides electrons, protons and other particles. Nevertheless this is not the end of the story. In 1923 de Broglie came with the idea, that quanta are not special objects (particles of light) which exist beside the material particles (such as electron or proton), but every particle has the same wave-corpuscular duality, which was characteristic for the quanta. Thus de Broglie made from the quanta a re-presentation in the sense, that they are not some special kind of objects, but rather a universal way of description, in which the whole universe should be represented. We see, that our classification of ruptures is not incidental, but it is in good accordance with the actual historical development of science. It is so, because scientists are conservative, and so they try to solve every anomaly at the smallest expenses. In this respect we can see also Maxwell’s theory of aether as an objectivisation, as an introduction of an object of a new kind, with the help of which electrodynamics (and as Maxwell discovered, also optics) could be explained inside of the „mechanical philosophy“. Poincaré shared this conservative attitude and therefore he tried to solve the problems which occurred in the theory of aether inside of this objectivisation. On the other side Einstein’s view was, that in order to solve these problems we need a new re-presentation. So even if from the technical point of view Poincaré and Einstein are close one to another, their interpretation is fundamentally different.

3.3 Coming back to Lakatos’ MSRP

Our model makes it possible to refine Lakatos’ crude alternative between taking the science as a whole as a programme or considering only programmes on the smallest scale. We would like to introduce programmes of intermediate scales, and to clarify the nature of the core and of the belt on each scale. The idea is to consider successions of theories on each of the four above mentioned scales. In this way we can consider theories which differ from each other with respect to re-formulations, objectations, re-presentations, or idealisations. A research programme on a particular scale would have to characterise the unity in such successions of theories.


IDEALISATION      RE-PRESENTATION
 OBJECTIVISATION
       RE-FORMULATION
In order to find the core of programmes on different scales, let us consider a succession of theories which differ with respect of re-formulations. All examples studied by Lakatos were of this kind, so we can take for instance his reconstruction of the Newtonian programme, which we presented above. Lakatos described the hard core of this programme as metaphysical. Now, if we remember, that a particular objectivisation determines the ontological status of the objects, we see, that Lakatos characterises Newton’s programme in terms of objectivisations. So we can generalise his approach in such a way, that we define a programme of a particular scale as a succession of theories which have differences only of the particular scale. The unity of such a succession can be described only in terms of the next larger scale. Therefore we define the programme of a particular scale by characterising its core in terms of the next larger scale. Thus for a programme consisting of re-formulations (for instance those described by Lakatos in the case of the Newtonian programme) the core is determined by an objectivisation. For a programme consisting of objectivisations (for instance the programme consisting of the Newtonian, Lagrangean and Hamiltonian mechanics) the core is given by a re-presentation. Finally for a programme consisting of re-presentations (for instance the mechanical, field theoretical and quantum re-presentations of the universe) the core is given by the idealisation. On the other side the protective belt of a programme consists of the use of the techniques of the same scale, to which the succession of the theories forming the programme belongs. Thus for the programme consisting of re-formulations the protective belt consists precisely in the use of reformulations, that is in introducing different hypothesis, but without changing the ontology of the theory, etc. We believe that this is a natural generalisation of the concepts of Lakatos and it solves all the problems he was facing. 

This generalisation of the MSRP leads us to a more complex concept of the hard core. We propose to consider the hard core consisting of different layers. These layers would correspond to programmes operating on different scales. In the absolute centre of the core of a scientific research programme the kind of ideal objects is fixed. For instance in  physics (i.e. the programme connecting the mechanical, field theoretical and quantum re-presentations) with the programmatic declaration: „Try to understand the natural phenomena as dynamic processes, obeying to natural laws“. Around this centre there is a layer fixing the re-presentation. In the case of  mechanics (i.e. the programme connecting the Newtonian, Lagrangean and Hamiltonian mechanics) it is fixed by the programmatic thesis: „These dynamic processes consist in mechanical motion of matter in space. Space is an absolute three-dimensional continuum, and the particles of matter interact at a distance“. The last layer of the core is fixing the objectivisation. In the case of Lagrangean mechanics it is fixed by the programmatic instructions: „Find a system of parameters, which characterise the configuration of the system. Using these parameters express the kinetic and potential energy and their difference is the Lagrange function. Substitute this function into the Lagrangean equations and solve them“. This layer of the core is surrounded by the protective belt of various re-formulations, which help solve these equations.  
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If some anomalies appear, the scientific research programme defends itself by developing a protective belt. At first the re-formulations are examined. In some cases it is sufficient to introduce a further planet into our planetary system and so by a reformulation of the number of planets solve the anomaly of Uranus’ motion. In this way the conceptual framework of the programme was saved. In the case of more serious anomalies, for instance those posed on mechanics by different bounds or friction, it is necessary to broaden the belt and incorporate into it also the objectivisation. Thus we can turn to the Hamiltonian mechanics instead of the Lagrangean. Nevertheless the basic re-presentation of physical processes as mechanical motion of matter in space, as well as the absolute character of the space and the interaction at a distance was preserved. An  even deeper anomaly as for instance the question of the nature of aether, require the incorporation also of the re-presentations into the belt. The new theory of motion, the theory of relativity, was in this way able to neutralise this anomaly by  changing the absolute three-dimensional space into a relative four-dimensional space-time, and giving up the concept of force acting at a distance. But even such a deep anomalies were solved inside the belt, and so the hard core itself, based on idealisation of motion could be saved.

We believe, that our approach can solve a problem posed by Forrai: „Nor can the concepts of negative and positive heuristic serve as a basis for a general heuristic in the sense of MPR (Method of Proofs and Refutations) , for they belong to individual research programmes, and may have very little in common“ (Forrai 1993, p. 174). We think that our discrimination of programmes of different magnitudes gives us a chance to find something in-between the general heuristics in the sense of MPR and heuristics belonging to individual research programmes. We have in mind heuristics belonging to each of the particular scales. If we consider idealisations, re-presentations, objectivisations, and re-formulations in more detail (see the papers mentioned above), we will find out, that there are some common patterns of development on each of these scales. Some of these patterns belong to heuristics. 

Lakatos’s description of the heuristics in his MPR is not so general, as it seems to be. Let us remember, that it is based only on one case study. So it is possible, that in areas of mathematics other than geometry, the heuristics might work in different way (c.f. the lemma-exclusion method mentioned in the first part of this paper). With the heuristics of the individual research programmes it is even worse. Lakatos described them only very shortly. Maybe, if one would describe Bohr’s or Newton’s programme in such a length, as Lakatos described the development of the theory of polyhedra (analysing works of 39 mathematicians) some more general patterns of heuristics could be found.

3.4 Some further developments of the MSRP

Our refinement of the concept of research programme can resolve the conflict between Giorello’s reconstructions of Archimedes and Riemann on the one side and Koetsier’s criticism of these reconstructions on the other. If we consider Archimedes or Riemann, it is obvious that they operate on the level of objectivisations (i.e. they change the ontology of mathematical objects). That is why it was impossible to characterise the hard core of their programmes in terms of metaphysics and why Giorello was forced to characterise it in terms of re-presentation. If we accept that research programmes operate on different scales and only on one of these scales, the smallest one, the unity of the programme is given by metaphysical hard core (i.e. by a fixed objectivisation), while on the next scale the core has the form of a fixed representation, there is nothing wrong with Giorello’s approach. 

Thus in the question of the reconstructions of the programmes Archimedes and Riemann we believe, that Koetsier’s criticism was unjustified. There is no need, why should be the unity of these research programmes given in terms of a metaphysical hard core. Also Koetsier’s concept of research projects seems not to fit into the Lakatosian methodology. Lakatos’ basic idea was to consider not isolated theories (or projects), but their successions, and characterise their unity. Thus we believe, that a research project is just one step in the development of a research programme. For instance the different models, used by Newton could be called also as projects.

On the other side Koetsier’s concept of research traditions can be nicely incorporated into our global picture. It seems, that what Koetsier calls research traditions coincides with what we characterised as programmes of the second magnitude, i.e. programmes connecting theories, differing in objectivisation and so the unity of which is given by a common re-presentation. The characteristic features with help of which Koetsier characterised a research tradition (a fundamental mathematical domain and general assumptions about the methods of proof - see Koetsier 1991 p. 151) as well as the basic examples he is giving (the Demonstrative Tradition, the Euclidean Tradition, the 17th Century Geometric Tradition, the Formalist Tradition, the Conceptual Tradition and the Structuralist tradition) are in good accordance with our description of re-presentations in (Kvasz 1998c). Thus even if we prefer the terminology of research programmes (because this theory is able to explain the relation between the programmes of different scales), we have to admit, that Koetsier described in a precise way the re-presentations in mathematics. He did not study the objectivisations in mathematics, because he restricted the concept of the research programme (in the narrow Lakatosian sense, where the core has to be metaphysical) only to science, and did not take into consideration for instance the logicist or the Erlangen programme. This led him to see research programmes and research traditions as alternatives, rather than descriptions of different scales of development. This means that we, in contrast to Koetsier believe, that there are programmes (in the narrow Lakatosian sense) also in mathematics, and that there  are research traditions (analogous to Koetsier’s ones) also in physics. 

We believe, that misunderstandings often root in the fact, that authors speak about changes on different scales, but are not aware of it. In particular we think that this was the case in the controversy between Lakatos and Kuhn. Thus at the end we would like to use our theory to clarify the differences between the Lakatosian and Kuhnian theory of scientific growth. We believe that these theories are based on the analysis of change in science on different scales. 

Lakatos’ theory is based on the analysis of the smallest changes (re-formulations, on which the original concept of a research programme was based). As we showed, the concept of a research programme can be generalised also for the analysis of objectivisations and in a metaphorical sense we can use it also to describe re-presentations. But as Lakatos’s theory is a theory of continuity, and in order to be able to describe a continuous development on a particular scale, it is necessary to have a larger scale, which provides us with tools for the description of this continuity, Lakatos cannot deal with idealisations. Thus we can characterise Lakatosian theory with the following diagram:

 IDEALISATION      RE-PRESENTATION
 OBJECTIVISATION
       RE-FORMULATION

                          metaphorical                                generalised                          original

On the other side Kuhn’s theory is based on the analysis of the largest changes (idealisations as was the scientific revolution of the 17th century, on which the original concept of a scientific revolution was based). The concept of a revolution can be used also in the analysis of re-presentations (as was the Copernican or the Einsteinean revolution). Nevertheless in the description of objectivisations we can use it only in a metaphorical way. Kuhn’s theory is a theory of discontinuity, and in order to be able to represent a discontinuous development on a particular scale, it needs a smaller scale, which provides us with the continuos background, in which the discontinuity appears. Therefore Kuhn cannot deal with re-formulations as changes and he describes science on this smallest scale as a mere puzzle solving. Thus we can characterise Kuhn’s theory with the following diagram:

 IDEALISATION      RE-PRESENTATION
 OBJECTIVISATION
       RE-FORMULATION

            original 

        generalised 

metaphorical

If we compare these two diagrams, it is obvious at the first glance, that the changes, on the analysis of which Lakatos based his theory, namely re-formulations, fell outside the Kuhnian framework, and on the other side the most important examples of change for Kuhn are outside of the scope of Lakatosian theory. On the intermediate scales again where one of the theories is generally valid, the other is only metaphorical. So it is obvious, that they could not understand each other. 

4. Final remarks

The aim of our paper was to show, that the methodology of Imre Lakatos has a potential for further development. We believe, that it was due to Lakatos’s unfortunate combination of methodology with dialectic, which slowed down or even stopped the development of his ideas. Dialectic is, maybe, good as a heuristic, as a way of asking questions about growth of knowledge. Nevertheless, it is contraproductive as a methodology, as a method of giving answers. We concentrated in this paper on three ways, in which dialectic is contraproductive.

First of all, after disclosing some methods of growth of knowledge (as monster-barring, exception-barring, and lemma-incorporation) dialectic incorporates these methods into a dialectical scheme, and therefore it stops further research (for lemma-exclusion and many other possible methods of MPR). Secondly, the general dialectical scheme of development is presented in logical terms, what creates a conflict with formal logic and involves methodology into unnecessary controversies, in the course of which the real methodological problems are neglected. Finally the dialectical scheme of development is presented in such a general way, that all other patterns of development are ignored. As the above mentioned controversies are usually very vivid, nobody realises, that only a small part of methodological problems and patterns of development is discussed.

We hope that by separating the methodological core from the dialectical belt, we can introduce a positive problemeshift into the Lakatosian methodology, which will be as theoretically as empirically progressive.
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